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Abstract
We present a model for microwave photoconductivity of two-dimensional
electron systems in a magnetic field which describes the effects of strong
microwave and steady-state electric fields. Using this model, we derive
an analytical formula for the photoconductivity associated with photon- and
multi-photon-assisted impurity scattering as a function of the frequency and
power of microwave radiation. According to the developed model, the
microwave conductivity is an oscillatory function of the frequency of microwave
radiation and the cyclotron frequency which becomes zero at the cyclotron
resonance and its harmonics. It exhibits maxima and minima (with absolute
negative conductivity) at microwave frequencies somewhat different from the
resonant frequencies. The calculated power dependence of the amplitude of
the microwave photoconductivity oscillations exhibits pronounced sublinear
behaviour similar to a logarithmic function. The height of the microwave
photoconductivity maxima and the depth of its minima are nonmonotonic
functions of the electric field. The possibility of a strong widening of the
maxima and minima due to a strong sensitivity of their parameters on the electric
field and the presence of strong long-range electric-field fluctuations is pointed
to. The obtained dependences are consistent with the results of the experimental
observations.

1. Introduction

Transport properties of two-dimensional electron systems (2DESs) subjected to a transverse
magnetic field were extensively studied in the late 1960s and early 1970s. To the best of
our knowledge, the first paper on this topic was published by Tavger and Erukhimov [1].
In this paper, the dissipative conductivity (diagonal component of the conductivity tensor)
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associated with the tunnelling between the Landau levels (LLs) accompanied by the impurity
scattering of electrons was calculated as a function of the electric and magnetic field. The
dissipative current–voltage characteristic obtained considering the impurity scattering in the
Born approximation [1] is given by an non-analytical dependence j ∝ E−2 exp(−E2

c /2E2),
where E is the electric field, Ec = h̄�c/eL, h̄ is the Planck constant, �c and L are the cyclotron
frequency and quantum Larmor radius, respectively, and e is the electron charge. Later, it was
shown [2] that more strict consideration of the impurity scattering leads to the ‘restoration’
of the Ohm law, so that j ∝ E at E < Eb = h̄�/eL, where h̄� is the LL broadening,
and j ∝ E−1 when Eb < E � Ec. Pokrovsky et al [3] demonstrated that the inclusion
of the processes of the electron inter-LL tunnelling via bound impurity states can give rise
to an exponential dependence similar to that obtained in [1] but with a smaller characteristic
field Ec. Theoretical studies of the transport in a 2DES irradiated with microwaves or under
non-equilibrium conditions associated with intraband or intersubband optical excitation were
carried out in [4–6]. In particular, it was predicted by Ryzhii [4] (see also [7]) that microwave
radiation with the frequency � somewhat exceeding the cyclotron frequency or its harmonics
��c, where � is an integer, can result in absolute negative conductivity (ANC) in a 2DES.
Nonlinear microwave photoconductivity associated with the effect of photon-assisted impurity
scattering of electrons was studied theoretically in [8–10]. In particular, it was demonstrated
that the multi-photon processes (both virtual and real) can significantly influence the dissipative
and Hall components of the conductivity tensor. Since current–voltage characteristics with
ANC inevitably exhibit ranges with negative differential conductivity (NDC), it was clear that
time that uniform states of a 2DES with ANC can be unstable [11].

An interest in theoretical studies of non-linear transport in 2DESs has revived after the
observation of the breakdown of the quantum Hall regime [12] (see, for example, the articles
by Heinonen et al [13], Balev [14], Chaubet et al [15, 16], and Komiyama et al [17, 18], and
the review by Nachtwei [19]).

Recent observations of vanishing electrical resistance/conductance in 2DESs caused by
microwave radiation [20–23], have stimulated extensive efforts to clarify the nature of the
uncovered effects and triggered a new surge of theoretical papers (see, for example, [24–33]).
The occurrence of the so-called zero-resistance/conductance states is primarily considered [24–
27, 32] as a manifestation of the effect of ANC associated with the photon-assisted impurity
scattering [4, 7, 26, 32], possibly, complicated by the scattering processes involving acoustic
phonons [30–33]. The role of multi-photon-induced scattering processes was evaluated in
[28, 29] using models similar to that considered earlier [8, 9]. Vavilov and Aleiner [32] have
developed a general approach based on the quantum Boltzmann equation in the quasi-classic
approximation which provides a description of non-linear effects in a 2DES. In this paper, we
use a more simple and transparent model of the microwave conductivity bearing in mind the
goal to obtain explicit analytical formulae describing non-linear effects, namely, formulae for
the dependences of the photoconductivity maxima and minima on the microwave power and
the electric field (i.e., on the ac and dc fields). In particular, we demonstrate that the magnitude
of the microwave photoconductivity maxima and minima is a non-monotonic function of the
microwave power and the electric field. It is also shown that an increase in the microwave
power and/or the electric field leads to a marked shift of the maxima and minima and an
increase in their width. Due to a high sensitivity of the microwave photoconductivity to the
local electric field, the observable characteristics of the 2DES can be essentially affected by
long-range electric-field fluctuations.

The obtained results shed light on some features of the effects observed experimentally.
After this introduction, in section 2, we write down a general formula for the dissipative

current based on the notion that this current is associated with the spatial displacement of the
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electron Larmor orbit centres caused by the photon-induced impurity scattering processes. The
probability of these processes is a function of the net dc electric field (including both the applied
and Hall components) and the ac microwave electric field. This probability is presented as a
sum of the terms corresponding to the participation of different numbers of real photons [8, 9].
Such a technique allows us to bypass the diagram (perturbation) summation. In section 3, we
calculate the microwave photoconductivity in a relatively low dc electric field (Ohmic regime)
as a function of the microwave frequency and power. Section 4 deals with the calculation
of the microwave photoconductivity in a strong dc electric field when the latter substantially
affects the scattering processes. In section 5, we consider the effect of microwave radiation on
intra-LL impurity scattering. Section 6 deals with the discussion of the obtained results and
its relevance to the pattern of the experimental observations.

2. General equations

At low temperatures T � h̄�c and low electric fields E � Ec, the dissipative dark current
(without irradiation) is associated mainly with the electron transitions within the same LL.
Under the microwave radiation, the inter-LL electron photon-assisted transition can markedly
contribute to the dissipative current. The microwave radiation can also affect the intra-
LL scattering processes. Therefore, the microwave photocurrent, i.e., the variation of the
dissipative current caused by irradiation, can be presented as

jph = j (inter)
ph + j (intra)

ph , (1)

where j (inter)
ph is the contribution associated with the electron transitions between the LLs with

different indices stimulated by microwave radiation and the second term on the right-hand side
of equation (1) is the variation of the intra-LL component of the dissipative current.

For the probability of the transition between the (N, kx , ky) and (N ′, kx + qx, ky + qy)

electron states in the presence of the net dc electric field E = (E, 0, 0) perpendicular to the
magnetic field H = (0, 0, H ) and the ac microwave field E� = (Eex, Eey, 0) polarized in the
2DES plane (ex and ey are the components of the microwave field complex polarization vector),
we will use the following formula obtained on the basis of the interaction representation of the
operator of current via solutions of the classical equations of electron motion [8, 9]:

WN,kx ,ky ;N ′,kx +qx ,ky +qy = 2π

h̄

∑
M

Ni|Vq |2|QN,N ′ (L2q2/2)|2

× J 2
M (ξ�(qx , qy))δ[Mh̄� + (N − N ′)h̄�c + eE L2qy]. (2)

Here N is the LL index, kx and ky are the electron quantum numbers, (qx and qy) are their

variations due to photon-assisted impurity scattering, q =
√

q2
x + q2

y , e = |e| is the electron

charge, Ni is the impurity concentration, and Vq ∝ qs exp(−diq) is the matrix element of the
electron–impurity interaction, where s = −1 for charged remote impurities, di is the spacing
between the 2DES and the δ-doped layer, and s = 0 and di = 0 for residual impurities
immediately in the 2DES. The functions characterizing the overlap of the electron initial and
final states are QN,N ′ (η) = P(N ′−N)

N (η) exp(−η/2), P(N ′−N)
N (η) ∝ L(N ′−N)

N (η), where L�
N (η)

is the Laguerre polynomial. The LL form-factor is determined by the function δ(ε), which at
a small broadening � can be assumed to be the Dirac delta function. The effect of microwave
radiation is reduced to the inclusion of the energy of really absorbed or emitted M photons
Mh̄� in the transition energy balance (in the argument of the function δ in equation (2)) and the
appearance of the Bessel functions JM(ξ�(qx, qy)), that reflects the contribution of virtually
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absorbed and emitted photons [8, 9]. Here

ξ�(qx, qy) = eE
m

|qxex + qyey − i(�c/�)(qxey − qyex)|
|�2

c − �2| , (3)

where m is the electron effective mass. Generally, as follows from equation (3), ξ�(qx, qy)

depends on the polarization properties of the incident radiation. It is convenient to present
ξ�(qx, qy) in the form

ξ�(qx, qy) = ξ�	(qx/q, qy/q)Lq. (4)

Here ξ� = √〈|ξ�(qx, qy)|2〉/Lq corresponds to nonpolarized radiation, so that ξ� =
(eE

√
�2

c + �2/
√

2mL�|�2
c − �2|), and 	(qx/q, qy/q) describes an anisotropy associated

with the specific of the radiation polarization. The properties of this function are determined
by the general properties of the photoconductivity tensor [34].

When ξ� becomes of the order of unity, the amplitude of the Larmor orbit centre oscillation
in the microwave field is about L. Taking into account that for the transitions from the LLs
with N � 1, which play the main role in a 2DES with a large filling factor, one can put
P�

N (η) � J�(2
√

Nη), the inter-LL contribution to the photocurrent can be presented in the
following form:

j (inter)
ph ∝ Ni L

2
∑

N,�,M�0

fN (1 − fN+�)

∫
dqx dqy qyq2s exp(−2diq − L2q2/2)

× J 2
�(

√
2N Lq)J 2

M(ξ�Lq))δ(Mh̄� − �h̄�c + eE L2qy), (5)

where fN is the Fermi distribution function.

3. Ohmic regime

At E < Eb, assuming for definiteness that δ(ω) = γ /π(ω2+γ 2), where γ = �/�c, expanding
the right-hand side of equation (5) over eE L, taking into account that J 2

�(
√

2N Lq) �
cos2[

√
2N Lq − (2� + 1)π/4]/(π

√
2N Lq) for large N , and integrating, we arrive at

j (inter)
ph ∝ E�

∑
�,M

��RM(ξ�)(��c − M�)

[(��c − M�)2 + �2]2
. (6)

Here

�� =
∑

N

fN (1 − fN+�)/
√

N (7)

determines the temperature dependence (very weak) of the photocurrent associated with the
scattering mechanism under consideration, and dependence

RM(z) = 2
∫ ∞

0
dx x2(s+1) exp(−βx − x2/2)

∫ 2π

0
dϕ sin2 ϕ J 2

M (z x	(ϕ)) (8)

accounts for the specific of the scattering matrix elements. Here β = 2di/L and 	(ϕ) =√
2/[(�c/�)2 + 1]|ex cos ϕ + ey sin ϕ − i(�c/�)(ey cos ϕ − ex sin ϕ)|. One can see that near

the cyclotron resonance, � � �c, 	(ϕ) � 1 disregarding the radiation polarization. If the ac
electric field is parallel to the dc electric field, i.e., ex = 1 and ey = 0, for an arbitrary ratio
(�c/�), one obtains 	(ϕ) = √

2/[(�c/�)2 + 1]
√

1 + [(�c/�)2 − 1] sin ϕ. When the ac and
dc electric fields are directed perpendicular to each other (ex = 0 and ey = 1), one obtains
	(ϕ) = √

2/[1 + (�c/�)2]
√

1 + [(�c/�)2 − 1] cos ϕ. In the case of circular polarization or
when the microwave radiation is nonpolarized, we have 	(ϕ) = 1 at any ratio �c/�. As
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can be inferred from the above formulae, in the case of a linearly (or elliptically) polarized
radiation, the argument of the Bessel function in equation (8) depends on ϕ. Consequently,
the dissipative microwave photoconductivity (as well as the Hall component) can exhibit some
polarization selectivity [8, 9, 32]. As follows from the above examples, such an effect is not
very significant. Leaving the effect of radiation polarization for consideration elsewhere, we
shall disregard this effect in the following, setting 	(ϕ) = 1, so that

RM(z) =
∫ ∞

0
dx x2(s+1) J 2

M(xz) exp(−βx − x2/2). (9)

At β < 1, from equation (9) one can come to the following approximation:

RM(z) � exp(−z2)IM(z2), (10)

where IM (η) is the modified Bessel function. In particular, at z < 1 and at z � 1, function
RM(z) can be approximated as

RM(z) � exp(−z2)z2M

2M M!

[
1 +

z4

4(M + 1)

]
, RM(z) � 1√

2πz
. (11)

Considering that for the scattering mechanisms under consideration s varies from −1 to 0, we
have put for simplicity s = −1/2.

Taking into account that E2 ∝ p�, where p� is the microwave power density, introducing
the characteristic microwave power p̄� = m�3/2πα � 21.8m�3z2

0, where α = e2/h̄c �
1/137 and c is the speed of light, and using equations (6) and (9), for a 2DES with β < 1 we
arrive at

j (inter)
ph ∝ E� exp

[
−P f

(
�

�c

)]{
I1

(
P f

(
�

�c

)) ∑
�

��(��c − �)

[(��c − �)2 + �2]2

+ I2

(
P f

(
�

�c

)) ∑
�

��(��c − 2�)

[(��c − 2�)2 + �2]2
+ · · ·

}
, (12)

where P = p�/ p̄� is the normalized microwave power and f (ω) = ω(1 + ω2)/(1 − ω2)2. In
particular, at P f (�/�c) < 1, equation (12) can be presented as

j (inter)
ph ∝ E� exp[−P f (�/�c)]

{
P

2
f

(
�

�c

) ∑
�

��(��c − �)

[(��c − �)2 + �2]2

+
P2

8
f 2

(
�

�c

) ∑
�

��(��c − 2�)

[(��c − 2�)2 + �2]2
+ · · ·

}
. (13)

One can see from the first term in the right-hand side of equations (12) and (13) that
j (inter)
ph = 0 at ��c = �, whereas j (inter)

ph > 0 if ��c slightly exceeds � and j (inter)
ph < 0

(i.e., the dissipative microwave photocurrent is in opposition to the electric field) when ��c

is somewhat smaller than �. As also follows from equations (12) and (13), j (inter)
ph exhibits

maxima and minima at �/�c = �− δ(+) and �+ δ(−), respectively, where 0 < δ(+), δ(−) < 1.
These maxima and minima correspond to the electron transitions with the absorption of one
real photon. Apart from the single-photon maxima and minima, there are the maxima and
minima associated with the two-photon (described by the second terms in the right-hand sides
of equations (12) and (13)) and multiple-photon absorption processes.

Using equations (12) or (13), one can find that δ(±) � √
3�/h̄�c. At moderate microwave

powers, estimating the LL broadening as (see, for example, [29, 35, 36]) � = √
2�ca/πτ ,

where τ is the electron momentum relaxation time estimated from the electron mobility at
H = 0 and p� = 0 and a � 1 is a semi-empirical broadening parameter which describes the
difference between the scattering time τ and the net scattering time determined by all other
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Figure 1. Dissipative photocurrent component j (inter)
ph versus inverse cyclotron frequency �/�c in

the vicinity of the cyclotron resonance at different normalized microwave powers P: (a) �/2π =
100 GHz, a = 1, (b) �/2π = 50 GHz, a = 1, (c) �/2π = 100 GHz, a = 10, and
(d) �/2π = 50 GHz, a = 10.
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Figure 2. Oscillations of j (inter)
ph as a function of inverse cyclotron frequency �/�c at different

microwave powers (�/2π = 50 GHz, a = 10). The inset shows j (inter)
ph (solid curve) and j (intra)

ph
(squares) versus inverse cyclotron frequency.

mechanisms, one can find that δ(+) � δ(−) � √
6a/π�cτ . Assuming τ = 5.8 × 10−10 s,

a = 1 − 10, and �/2π = 50 GHz (as in [23]) and using the above analytical estimate, we
obtain δ(+) � δ(−) � 0.1 − 0.3.

Figures 1 and 2 show the dependences of the inter-LL component of the microwave
photocurrent j (inter)

ph on the inverse cyclotron frequency �/�c for different broadening
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Figure 3. Maxima and minima of j (inter)
ph corresponding to different resonances as functions

of normalized microwave power P (�/2π = 50 GHz and a = 10).

parameters and for different microwave powers and frequencies calculated for a 2DES with
β < 1 using equation (12). It is assumed that τ = 5.8 ×10−10 s. The oscillatory j (inter)

ph versus
�/�c dependence at different P with the paired maxima and minima corresponding to the
cyclotron resonance and its harmonics is shown in figure 2. One can see from figures 1 and 2
that the height of the maximum and the depth of the minimum near the cyclotron resonance
(as well as near the cyclotron harmonics) increase with increasing microwave power. This
increase is rather slow; the span of the photoconductivity as a function of the microwave
power at low and moderate powers behaves similarly to a logarithmic function. However,
at large powers, the height of the maximum (depth of the minimum) saturates and begins to
fall (see figure 3). Figure 3 demonstrates the variations of the photoconductivity maxima and
minima with increasing microwave power. As seen from figure 3, the height of the first one-
photon maximum (depth of the relevant minimum), corresponding to � = 1 and M = 1, falls
when the microwave power increases beyond some threshold value. In this range of microwave
power, the maxima (minima) corresponding to higher resonances can be comparable with that
near the cyclotron resonance. At high microwave powers, the two-photon resonant maxima
(minima) can increase faster than those associated with the one-photon absorption processes
(compare the curve for �/�c ± δ(±) = 1.5 and the curves for �/�c ± δ(±) = 1 and 2).
In particular, when approximation (10) is valid, the ratio of the two-photon maxima j (2,3)

ph

(M = 2 and � = 3) to the single-photon maxima j (1,2)

ph (M = 1 and � = 2) calculated

using equation (12) can be estimated as max j (2,3)

ph / max j (1,2)

ph � 3.37Pe2P . As follows from
the latter estimate, the ratio in question, being rather small at small P , markedly rises with
increasing P . Figure 4 shows the variations of the position of the photoconductivity maxima
near the cyclotron resonance δ(+) and its width at half-maximum �(+) (normalized by �c) with
increasing normalized microwave power P . One can also see from figures 1, 2, and 4 that the
width of the resonant maximum and minimum increases with increasing microwave power.
The broadening of the cyclotron absorption line at heightened microwave power associated
with a similar mechanism was discussed recently [36]. Apart from this, at high microwave
powers, the transition rate and, therefore, the LL broadening become larger. This can lead to
an increase in the broadening parameter a and, hence, to an extra increase in the maximum and
minimum width when the microwave power increases. At rather high powers, the two-photon
resonances can be observable. Figure 2 exhibits a comparably weak maximum and minimum
in the vicinity of �/�c = 1.5 corresponding to the two-photon transition (M = 2 and � = 3).
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in figures 1(a)–(d).

These results are consistent with experimental data by Mani et al [20, 23] and Zudov et al [21]
(see also [37]). Assuming, as in [21], that the power of the microwave source and the sample
cross-section are 10–20 mW and 0.25 cm−2, respectively, and using the above formula for the
characteristic microwave power p̄�, for �/2π = 50 GHz one can find that the experimental
conditions correspond to max P � (1 − 2) × 10−2. The later values are on the order of or
larger than those used in figures 1 and 2.

As follows from equations (6) and (9), the height of the maxima and the depth of the
minima determined by the function RM(z) depend on the parameter β, i.e., on the thickness
of the spacer separating the 2DES and the donor layer. This function is plotted in figure 5 for
M = 1 (one-photon absorption) and M = 2 (two-photon absorption) and z0 = 1. One can see
that R1(z) and R2(z) pronouncedly decrease with increasing β. If β � 1, using equations (6)
and (8), one can obtain instead of equation (12)

j (inter)
ph ∝ E�

β

{
F1

(√
P

β

√
f

(
�

�c

)) ∑
�

��(��c − �)

[(��c − �)2 + �2]2

+ F2

(√
P

β

√
f

(
�

�c

)) ∑
�

��(��c − 2�)

[(��c − 2�)2 + �2]2
+ · · ·

}
. (14)

Here for s = −1 and β � 1

FM (z) =
∫ ∞

0
dx J 2

M (xz/z0) exp(−x). (15)

At not too large z, setting JM (z) � aM sin(πz/bM), where aM is the first maximum of the
pertinent Bessel function and bM corresponds to its first zero, one can obtain

FM (z) �
(

πaM

2bM

)2
(z/z0)

2

[1 + (π/bM)2(z/z0)2]
. (16)

In particular, for M = 1 equation (16) yields F1(z) ∝ z2/β(1 + 0.67z2). At very large z,
FM (z) becomes a decreasing function of z similar to that given by equation (11). Considering
equation (16), near the first one-photon resonance (� = 1 and M = 1) at β � 1, from
equation (14) we obtain

j (inter)
ph ∝ E�P

β3
f

(
�

�c

)[
1 + 0.67

P

β2
f

(
�

�c

)]−1
(�c − �)

[(�c − �)2 + �2]2
. (17)
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Figure 5. Functions R1(z) and R2(z) for different values of parameter β.

Equation (14) demonstrates a decrease in the microwave photoconductivityand the height of its
maxima (depth of the minima) with increasing parameter β and slowing down with increasing
power. The former is due to a decrease in the impurity scattering rate because of a smoothening
of the fluctuating electric field created by charged impurities when the spacer becomes thicker
(di becomes larger). One can see a similarity between the roles of the inverse parameter β2

and the normalized microwave power P .

4. Photoconductivity in strong electric field

The average electric field Ē in the experimental situations [20–23] is rather moderate, so one can
assume that Ē < Eb. However, under the condition of ANC, electric-field domain structures
can be formed [25, 27, 33]. The value of the electric field E0, at which the net dissipative
conductivity changes its sign from negative to positive, essentially affects the magnitude of
the electric field variations in the domain structures in question. Although it is unclear as yet
what mechanism determines the threshold electric field E0, one can assume that it can be much
larger than Eb. In this case, the electric field in some regions may significantly exceed Eb. As
shown by Shchamkhalova et al [38], the LL broadening h̄� and, therefore, the characteristic
field Eb can substantially decrease in the electric field. Moreover, recent experiments [39]
showed that strong long range (λ � L) fluctuations are present in 2DESs with high electron
mobility. Due to these fluctuations, the local electric field can be of a rather large magnitude
(about 30–150 kV cm−1, as estimated by Kawano et al [18]), tangibly affecting the electron
inter-LL transitions [1, 4, 13, 17]. Hence, the inequalities E > Eb or E � Eb can take place
in the 2DES under consideration.

At relatively large net dc electric fields E > Eb, δ(ω) can be considered as the Dirac
δ-function. Taking into account that the transitions between high LLs provide the main
contribution to the mechanism of microwave photoconductivity under consideration, and
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integrating over qy in equation (5), we obtain

j (inter)
ph ∝

∑
�,M

��RM

(
P f

(
�

�c

)
,

h̄|��c − M�|
eE L

)[
h̄(��c − M�)

eE |E |L
]
, (18)

where

RM(z, y) =
∫ ∞

0
dx J 2

M (z
√

x2 + y2)
exp[−β

√
x2 + y2 − (x2 + y2)/2]

(x2 + y2)1/2−s
. (19)

If β < 1, the y-dependence ofRM(z, y) is mainly given by the factor exp(−y2/2). Considering
this, from equation (19) we obtain

j (inter)
ph ∝

∑
�,M

��R∗
M

(
P f

(
�

�c

)
,

h̄|��c − M�|
eE L

)

×
[

h̄(��c − M�)

eE |E |L
]

exp

[
− h̄2(��c − M�)2

2(eE L)2

]
. (20)

Here

R∗
M(z, y) =

∫ ∞

0
dx J 2

M

(
z
√

x2 + y2
) exp(−x2/2)

(x2 + y2)1/2−s
(21)

is a rather smooth function of y. At small microwave powers, equations (18) and (20)
coincide with that obtained a long time ago [4]. As follows from equation (18), the microwave
conductivity in a strong electric field also exhibits an oscillatory behaviour (associated primarily
with the two last factors in the right-hand side of equation (20)) with maxima and minima at
�/�c = � − δ(+) and �/�c = � + δ(−), respectively, for the one-photon transitions, and
�/�c = [� − δ(+)]/M and at �/�c = [� + δ(−)]/M for the transitions with absorption
of M photons. Here δ(+) � δ(−) � eE L/h̄�c = E/Ec. The width of the maxima and
minima in question linearly increases with E as �(+) � �(−) � 2.24E/Ec, while their
height is proportional to E−1. Indeed, equation (20) yields the following dependence of the
min/max j (inter)

ph for the one-photon absorption near the cyclotron resonance on the microwave
power P:

min/max j (inter)
ph ∝ exp(−P f (∓))

E
I1(P f (∓)), (22)

where f (±) = f (1 ± E/Ec). Here, assuming s = −1 and β < 1, we have used
the following estimate: R∗

1(z, 1) � 0.4 exp(−z2)I1(z2). Figure 6 shows the dependences
of min/max j (inter)

ph on the electric field at different microwave powers calculated using an

interpolation formula leading to min/max j (inter)
ph following from equation (12) in the low-field

region (for �/2π = 100 GHz and a = 1 and 10) and to equation (22) in the high-field region.
At β � 1 and s = −1,

R1(z, y) � z2

4

∫ ∞

0
dx

exp(−β
√

x2 + y2)

(x2 + y2)1/2
= z2

4
K0(βy), (23)

where K0(βy) is the McDonald function. Taking this into account, at low microwave powers
we arrive at

j (inter)
ph ∝ P f

(
�

�c

) ∑
�

��

[
h̄(��c − �)

eE |E |L
]

K0

(
H |��c − �|di

cE

)
. (24)

It is instructive that in this particular case (β � 1, i.e., di � L), the argument of the McDonald
function in equation (24), which can be presented as |��c−�|di/vH, where vH = cE/H is the
Hall drift velocity, is determined by classical values (it does not include the Planck constant).
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Figure 6. Near cyclotron maxima and minima of j (inter)
ph versus electric field at different microwave

powers for �/2π = 100 GHz and different broadening parameters a: (a) a = 1 and (b) a = 10.

A marked sensitivity of the resonant maxima and minima to the electric field can be crucial
(together with the LL-broadening associated with the interactions other than the impurity
scattering) for the explanation of their fairly wide width observed experimentally, particularly,
considering strong electric-field fluctuations [39].

5. Suppression of intra-LL photoconductivity

Taking into account that, as follows from equation (2), the probability of the elastic impurity
scattering in the presence of microwave radiation differs from that in its absence by the factor
J 2

0 (ξ�(qx, qy)), and generalizing the results of [2] (see also [36]), the dissipative current
associated with the intra-LL impurity scattering can given by

j (intra) ∝ ENi L
2
∑

N

fN (1 − fN )

×
∫

dqx dqy q2
y q2s exp(−2diq − L2q2/2)J 2

0

(√
2N Lq

)
J 2

0 (ξ�Lq)) (25)

at E < Eb, and

j (intra) ∝ Ni

E

∑
N

fN (1 − fN )

×
∫

dqx dqy q2s exp(−2diq − L2q22)J 2
0

(√
2N Lq

)
J 2

0 (ξ�Lq)) (26)

at E � Eb. Using the same procedure as in section 3, equation (25) for the case β < 1 and
E < Eb can be reduced to

j (intra) � j (intra)

dark R0(ξ�) � j (intra)

dark exp

[
−P f

(
�

�c

)]
I0

(
P f

(
�

�c

))
, (27)
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where j (intra)

dark = j (intra)|P=0 is the dissipative current associated with the intra-LL impurity
scattering without irradiation (dark current). Using equation (23), we arrive at the following
expression for the photoconductivity associated with the microwave-stimulated variation of
the dissipative intra-LL conductivity:

j (intra)

ph � j (intra)

dark

{
exp

[
−P f

(
�

�c

)]
I0

(
P f

(
�

�c

))
− 1

}
� −3

4
j (intra)

dark P f

(
�

�c

)
. (28)

The last term in the right-hand side of equation (24) is valid when P f (�/�c) < 1. As seen
from equation (24), the contribution of the effect of microwave radiation on the elastic intra-
LL impurity scattering to the photoconductivity is negative. This contribution as a function of
�/�c exhibits a smeared minimum at the cyclotron resonance. This minimum is attributed
to the suppression of the impurity scattering by microwave radiation. Such a suppression
(associated with the absorption and emission of virtual phonons) is most effective when the
amplitude of the Larmor orbit centre oscillation is maximum, i.e., at the cyclotron resonance.
The j (intra)

ph versus �/�c dependence calculated using equation (24) is shown by squares
in the inset in figure 2. Since this dependence does not comprise any resonant factor, it
cannot affect significantly the oscillatory dependences associated with the photon-assisted
inter-LL transitions, although it leads to some deepening of the photoconductivity minimum
near the cyclotron resonance. Formulae (23) and (24) correspond to the total suppression of
the dissipative intra-LL conductivity, i.e. to j (intra) = 0 and, therefore, j (intra)

ph = − j (intra)

dark , at
the cyclotron resonance. However, the dephasing of the electron oscillatory movement in the
microwave field due to different scattering events can limit the suppression of the dissipative
intra-LL conductivity. This effect can be included by the substitution of the function f ∗(ω) =
f (ω)(1−ω2)/[(1−ω)2+γ 2] for the function f (ω) introduced in section 3. Taking into account
that f ∗(1) = 1/2γ 2, at P < 2(�/�c)

2 we obtain min j (intra) � j (intra)

dark [1 − P(�c/
√

2�)2]
and, consequently, min j (intra)

ph � − j (intra)

dark P(�c/
√

2�)2. At P � 2(�/�c)
2, one obtains

min j (intra) � j (intra)

dark (�/
√

π P�c) and min j (intra)

ph � − j (intra)

dark [1 − (�/
√

π P�c)] � − j (intra)

dark .

6. Comments

The proposed model describes the following features of the microwave conductivity in a 2DES
subjected to a magnetic field:

(i) The zeroth microwave conductivity at the cyclotron resonance and its harmonics,as well as
the location of the photoconductivity maxima and minima in the vicinity of the resonances
with ANC in the minima.

(ii) Nonlinear dependences of the photoconductivity on the microwave power characterized
by slowing down, saturation, and even decrease in the minima/maxima magnitude with
increasing microwave power.

(iii) Shift of the photoconductivity maxima and minima and their broadening with increasing
microwave power and electric field.

(iv) Possibility of the suppression of the dissipative conductivity associated with the intra-LL
transitions by the microwave radiation.

At sufficiently strong irradiation the negativity of the dissipative photoconductivity in
its minima can lead to the zeroth or negative net dissipative conductivity. Since the sample
resistance in the Hall bar geometry and the conductance in the Corbino geometry are virtually
proportional to the net dissipative conductivity, the zeroth of the latter corresponds to the zeroth
resistance or the zeroth conductance (depending on the configuration), and the oscillations of
the dissipative photoconductivity give rise to oscillations of the characteristics of the sample



Nonlinear effects in microwave photoconductivity of two-dimensional electron systems 6867

as a whole. The photon-assisted scattering processes also result in some variation of the Hall
component of the conductivity tensor (as considered in the case of 3DESs [9]). However,
due to a large value of the classical Hall conductivity, the variations of the Hall conductivity
induced by microwaves yield a relatively small contribution to the sample resistance.

The positions of the photoconductivity zeros, maxima, and minima are determined by the
specific features of the photon-assisted impurity scattering of electrons in the magnetic field.
Some of these features of the microwave photoconductivity, predicted theoretically [4, 7] and
observed experimentally [21, 23] (see also [21, 22, 37]), have been discussed in the framework
of different theoretical models [24, 26]. It is instructive that the effect of suppression of the
impurity intra-LL scattering by microwave radiation can result in a shift of the microwave
photoconductivity zero to �/�c slightly smaller than unity. Thus, according to the above
results, the phase shift of the photoconductivity maxima and minima is determined by different
factors and it is not necessarily equal to ±π/4 as stated in [20] (see also the discussion in [37]).

A similar mechanism of ANC stimulated by radiation (including the suppression of
the transitions without absorption and emission of real photons) is also associated with the
electron transitions between the spatially separated states observed experimentally in multiple-
quantum-well structures with sequential resonant tunnelling some time ago [40].

The photon-assisted scattering on acoustic phonons can also lead to the oscillatory
dependence of the dissipative conductivity with ANC at �/�c between the cyclotron
resonances and its harmonics [30, 31]. It is remarkable that this mechanism provides the
photoconductivity minima and maxima at approximately the same values of �/�c, where the
photon-assisted impurity scattering yields, in contrast, maxima and minima. Thus, the photon-
assisted acoustic scattering can to some extent suppress the oscillations associated with the
photon-assisted impurity scattering. Such a competition of the mechanisms in question can be
essential because the piezoelectric acoustic scattering is one of the main scattering mechanisms
limiting the electron mobility in perfect 2DESs at low temperatures [41]. The contribution of
the photon-assisted acoustic scattering mechanism to the microwave conductivity markedly
increases with the temperature, particularly in the range where T is comparable with the
characteristic energy of acoustic phonons h̄s/L (s is the speed of sound). Assuming s = 3×105

and H = 1−2 kG, one can obtain Tac � 0.4 K. The latter value is only slightly smaller than T in
the experiments. Hence, taking into account that the photocurrent associated with the photon-
assisted impurity scattering exhibits a very weak temperature dependence (given by the factor
��), the suppression of the microwave photoconductivity oscillations and the effect of ANC (a
pronounced decrease in the minima/maxima magnitude) with increasing temperature observed
experimentally [20, 21] can possibly be attributed to the inclusion of the above mentioned
photon-assisted acoustic scattering mechanism. This mechanism, however, provides a fairly
slow decrease in the magnitudes of photoconductivity maxima and minima with increasing
temperature. One can set up the hypothesis that relatively small temperature variations of the
photoconductivity lead to a significant change in the electric-field distributions whose shape
determines the values of the sample resistance and conductance. Indeed, the interference
of the photon-assisted impurity and phonon mechanisms results in the transformation of the
net current–voltage characteristics. Even small temperature variations of the net conductivity
(near its zero) can lead to a transition from a uniform electric field distribution to a domain
structure with different sample resistance (conductance) due to an instability [11]. Apart from
this, temperature variations can result in a significant change in the value of the dc electric
field E0 at which the net dissipative current turns zero and, hence, strongly affect the domain
shape and the observable characteristics [25, 27], in particular, the residual resistance [42, 43].

The photoconductivity considered above (and in [4, 7, 26, 28, 29, 32]) is associated with
a direct effect of the microwave ac field on the impurity scattering of electrons. However, the
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photon-assisted impurity scattering is accompanied by the absorption of photons and, hence,
some heating of the 2DES. Such a heating can lead to a variation of the dissipative conductivity
associated with the scattering on impurities and acoustic phonons. The dissipative current
in strong magnetic fields associated with the intra-LL impurity scattering is sensitive to the
temperature (mainly via the factor �0). This effect in part gives rise to the smearing of
the Shubnikov–de Haas oscillation with increasing temperature. However, the temperature
dependence of �0 in the range where the oscillations of microwave photoconductivity under
consideration were observed experimentally is rather weak. The electron heating caused by
the photon-assisted impurity scattering processes is compensated by the relaxation processes
with the electron transitions from higher to lower LLs with the emission of acoustic phonons.
As shown recently [44], these relaxation processes contribute to the dissipative conductivity
(their contribution is negative), complicating the spectral dependence of the microwave
photoconductivity.

The nontrivial dependences of the maxima/minima span on the microwave power are
consistent with those observed experimentally [20, 23] and are attributed to the multi-photon
effects including the absorption and emission of real and virtual phonons (see [8–10, 29, 35]).
A relatively large width of the microwave photoconductivity maxima and minima is
often identified with an extra broadening of LLs (in comparison with the LL broadening
corresponding to the electron collision time determining the electron mobility) associated with
more complex interaction discussed previously [24, 26, 29]. As pointed out above, this effect
can be attributed to the nonlinear effects of the ac microwave field and strong electric-field
dependences of the local photoconductivity characteristics combined with strong long range
fluctuations of the electric field. In the presence of strong long range (λ � L) electric-field
fluctuations the macroscopic properties of the 2DES, in particular the domain structures with
the scale exceeding λ, can be determined by the components of the dissipative photocurrent
averaged over these fluctuations jph(E)Ex/E and jph(E)Ey/E . Due to a strong electric-field
dependence of jph (see equation (18)), the dependences of the averaged quantities on the
components of the averaged electric field Ex ∝ V and Ey ∝ VH (where V and VH are the
potential drop along the current and the Hall current, respectively) as well as their spectral
dependences can be significantly different from those of the local dissipative current.
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